Inferring the regulatory network behind a gene expression experiment
نویسندگان
چکیده
منابع مشابه
Inferring the regulatory network behind a gene expression experiment
Transcription factors (TFs) and miRNAs are the most important dynamic regulators in the control of gene expression in multicellular organisms. These regulatory elements play crucial roles in development, cell cycling and cell signaling, and they have also been associated with many diseases. The Regulatory Network Analysis Tool (RENATO) web server makes the exploration of regulatory networks eas...
متن کاملInferring Gene Regulatory Network Structure
Inferring the network structure of gene regulatory networks is one of the most important problems in contemporary bioinformatics. We analyze different methodologies for inferring small to very large sized gene networks. We use the datasets of DREAM 3 in-silico network challenge that is provided online [1]. The challenge involves inferring primarily the network structure from steady state gene e...
متن کاملInferring Gene Regulatory Networks from Gene Expression Data by a Dynamic Bayesian Network-Based Model
Enabled by recent advances in bioinformatics, the inference of gene regulatory networks (GRNs) from gene expression data has garnered much interest from researchers. This is due to the need of researchers to understand the dynamic behavior and uncover the vast information lay hidden within the networks. In this regard, dynamic Bayesian network (DBN) is extensively used to infer GRNs due to its ...
متن کاملASIAN: a web server for inferring a regulatory network framework from gene expression profiles
The standard workflow in gene expression profile analysis to identify gene function is the clustering by various metrics and techniques, and the following analyses, such as sequence analyses of upstream regions. A further challenging analysis is the inference of a gene regulatory network, and some computational methods have been intensively developed to deduce the gene regulatory network. Here,...
متن کاملInferring gene regulatory relationships from gene expression data
In order to understand how genes affect each others expression, we want to infer regulatory relationships between genes and use these genes to build gene regulatory networks. Several algorithms exist for inferring regulatory relationships between genes. One of the state of the art algorithms is Trigger, but Trigger seems to produce unsatisfactorily high probability estimates in some cases. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 2012
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/gks573